
Adaptive Timeout Strategies
for Microservice

Applications
Adrita Samanta & Govind Velamoor

Mentors: Lan (Max) Liu, Zhaoqi (Roy) Zhang,
Prof. Raja Sambasivan

MIT PRIMES October Conference, 10/12/2024
1

Distributed Systems are powerful but complex

2

Netflix’s distributed systems

Challenge:
Debugging and failure-tolerance

Benefits:

Scaling

Performance

Why are timeouts important for distributed systems?

Service A Service B

Normal Request
Service A Service B

Request

Response

Request

Response

Failed Request

3Request with a timeout
Service A Service B

Request, 5 ms
time limit

Response

Challenges with setting timeouts
Other challenges:

- Cache hit or miss.
- Systems can get overloaded.

- Multiple servers can accept the
same request.

4

Service
A

Service
B

Original average
latency

Service
A

Service
B

Request’s average latency
increases

Systems are changing

Latency is not the same every time

Service
A

Service
B

Time 1

5 ms

Service
A

Service
B

Time 2

4 ms

Service
A

Service
B

Time 3

6 ms

5 ms
avg

10 ms
avg

Service
A

Service
B

Service
B

Service
B

- As systems evolve, timeouts change.

- An optimal timeout is a timeout that results in the minimal possible average

amount of time before a response is received.
- Too short wasting work since we have to reissue requests

- Too long wasting time when request should have been discarded

- We continuously update the timeout values to adapt accordingly.

When is a timeout optimal?

5

- Three algorithms
- Dynamic Timeout Control

- Mathematical analysis

- Reinforcement Learning

- Evaluation

- Evaluation on a larger-scale / Future Work

- Summary

- Three algorithms
- Dynamic Timeout Control

- Mathematical analysis

- Reinforcement Learning

- Evaluation

- Evaluation on a larger-scale / Future Work

- Summary

Table of Contents

6

A simple control-based approach saves resources

- Collecting data is costly
- Day-to-day variations are hard to account for in timeout values

7

Dynamic timeout control (inspired by TCP)
Goal: Update timeout value on a per-request basis without previous data

Design overview:

- Decrease timeout value on a successful request
- Increase timeout value on failed request (timed out)

Dynamic timeout scheme: In the short/long term the system will adjust timeouts

Timeout Control Decision Process

8

Timed
out? NoYes

Timeout will increase
following exponential

backoff

Historically
consistent
latency?

NoYes

Stabilize timeout value Drastically decrease
timeout value

- Three algorithms
- Dynamic Timeout Control

- Mathematical analysis

- Reinforcement Learning

- Evaluation

- Evaluation on a larger-scale / Future Work

- Summary

Table of Contents

9

Mathematical Analysis uses historical data for prediction

- While systems are constantly changing, they remain structurally similar and
are the same application.

- Assumption: historical data is representative of future latency.
- Allows us to precisely calculate the optimal timeout value.

10

Increasing timeout values allow for precise hedging

11

A B
5 ms

Normal timeouts

A B
a1 ms

Sequential timeouts

a2 ms

an ms

…

Failure conditions
- Temporary increase
- System failure

Increase timeout value
- Sensitivity reduction
- Failure confirmation

Mathematical Model for Latency

12

Curve
Fitting

Expected
latency
function

Probability density
function

Cost Function:
Increase in latency due to
increase in timeout value

Extensions
to

sequences
Inputs

Final
integration

N
or

m
al

iz
ed

 p
ro

ba
bi

lit
y

Latency

Math behind mathematical model (1)

13

Latency

Expected
Latency

Latency

Normalized
Probability
Density

Math behind mathematical model (2)

14

Case where we time out

Case where the request
is successful

Cost function

Math behind mathematical model (3)

15

10

0.78 3.63 4.93 7.06

5.63 6.44 5.34 6.70

- Three algorithms
- Dynamic Timeout Control

- Mathematical analysis

- Reinforcement Learning

- Evaluation

- Evaluation on a larger-scale / Future Work

- Summary

Table of Contents

16

An agent learns optimal moves by interacting with
its environment

- Winning moves are rewarded
- Losing moves are punished
- Like someone learning to play a game

State used: array of latencies seen so far

Reward function used: -[total latency]

Reinforcement Learning 101

17

The complexity of latency might be understood by RL

18

- The systems are slow-changing, but latency itself is extremely complex
- Historical latency data may not be sufficient

Reinforcement learning
Goal: Train a Deep Deterministic Policy Gradient (DDPG) model to get a
response back in the least amount of time possible.

Dynamic timeout scheme:

Short term: Agent will be trained on how to respond

Long term: Agent will be retrained

Summary of strategies

19

Rank
(Anticipated)

Speed Feasibility Robustness

1 Timeout Control

Mathematical
Modeling

Timeout Control RL Model

2 Mathematical Modeling Mathematical Modeling

3 RL Model RL Model Timeout Control

- Three algorithms
- Dynamic Timeout Control

- Mathematical analysis

- Reinforcement Learning

- Evaluation

- Evaluation on a larger-scale / Future Work

- Conclusion

Table of Contents

20

Testbed Creation

21

Tools used
- Python
- Docker
- Modified version of wrk2
- Jaeger

Experiments/Evaluations

- Compare the median and 99th percentile observed latency of the three
proposed solutions with a control

- Various situations will be tested

22
time

latency

Introduce testbed here

- Three algorithms
- Dynamic Timeout Control

- Mathematical analysis

- Reinforcement Learning

- Evaluation

- Evaluation on a larger-scale / Future Work

- Summary

Table of Contents

23

- The distributed system application we developed is very small and not
representative of large-scale applications.

- DeathStarBench is an open-source benchmark suite modeled based on
real-world applications.

- We used DeathStarBench’s socialNetwork application to create our
evaluation testbed.

Evaluating our methods on a larger-scale

24

- socialNetwork is a networking application similar to Twitter and Facebook.
- The user can create posts, read posts, and follow/unfollow other users.
- The application also has many databases which increases the complexity of

requests in the application.

What is socialNetwork?

25

Adding timeout functionality to socialNetwork

- The framework which socialNetwork uses to make requests, doesn’t have timeouts.

- We modified the services of socialNetwork, in C++, to be able to call timeouts. We
used Docker to create another image and deploy our updated application.

- We tested sample workflows on our application using an HTTP workload generator
(wrk2) and visualized their requests (and timeouts called) using Jaeger.

- Eventually, we will feed in the optimal timeouts from our algorithms into our testbed
to test their performance.

26

Future Work

27

- We will evaluate the three algorithms on the smaller testbed we developed.

- We plan to connect the updated socialNetwork testbed with our algorithms to
evaluate their performance on a larger scale.

Table of Contents

- Three algorithms
- Dynamic Timeout Control

- Mathematical analysis

- Reinforcement Learning

- Evaluation

- Evaluation on a larger-scale / Future Work

- Summary

28

Summary

- When systems change, we need to update timeout values with them.

- We designed three novel algorithms to achieve this task.

- We implemented a new distributed systems testbed from scratch.

- We updated a large-scale application, socialNetwork, to have timeout
functionality which we will use to evaluate the performance of our three
methods.

29

Acknowledgements

30

We would like to thank

- Our mentors: Lan (Max) Liu, Zhaoqi (Roy) Zhang, and Prof. Raja Sambasivan
for their guidance and time.

- MIT PRIMES: Dr. Slava Gerovitch and Prof. Srini Devadas for this great
opportunity.

References

31

[1] Barroso L. A. Dean, J. The tail at scale. Communications of the ACM, 56:74–80, 2013.

[2] E. Troubitsyna. Model-driven engineering of fault tolerant microservices. Fourteenth Int. Conf. Internet Web Appl. Serv, 2019.

[3] Martinek P. Al-Debagy, O. A comparative review of microservices and monolithic architectures. 18th IEEE International Symposium on Computational Intelligence and Informatics, pages 000149–000154, 2019.

[4] Ojdowska A. Przybylek A. Blinowski, G. Model driven engineering of fault tolerant microservices. Fourteenth Int. Conf. Internet Web Appl. Serv, pages 1–6, 2019.

[5] Vishal Varshney Anton Ilinchik. All you need to know about timeouts: How to set a reasonable timeout for your microservices to achieve maximum performance and resilience. Zalando Engineering Blog, 2023.

[6] Tcp congestion control algorithms. https://www.tetcos.com/pdf/v13/Experiments/TCP-Congestion-Control-Algorithms.pdf

[7] B. Gregg. Frequency trails. https://www.brendangregg.com/FrequencyTrails/modes.html

[8] pyms. https://python-microservices.github.io/home/

[9] J. Richards. wrk2. https://github.com/giltene/wrk2

[10] The second law of latency: Latency distributions are never normal.

[11] Li Q. Yang, B. Enhanced particle swarm optimization algorithm for sea clutter parameter estimation in generalized pareto distribution. Appl. Sci., 2023.

[12] He J. Zhang, W. Modeling end-to-end delay using pareto distribution. Second International Conference on Internet Monitoring and Protection (ICIMP 2007), 2007.

[13] Zhang Y. Cheng D. Shetty A. et al. Gan, Y. Death star bench repository.

[14] Zhang Y. Cheng D. Shetty A. et al. Gan, Y. An open-source benchmark suite for microservices and their hardware-software implications for cloud edge systems. ASPLOS ’19: Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and Operating Systems, 2019.

https://python-microservices.github.io/home/

Notes
Overall: Speak slower; assuming too much knowledge form audience

Slide 2: what does the netflix distributed system mean; moves testbed to eval section

Slide 3: Rename title. Something like “proper timeouts help make system more efficient”

Slide 5: Define optimal

Slide 9: Animate different components as they are brought up

Slide 10: What does the graph actually say; talk about what each image means

RL Slides: There seems to be something missing for the intuition as to why RL was used

Slide 17: The diagrams need to be explained + add an example for how the systems will be compared

Slide 18/19: Continue from the evaluation testbed that Govind has and continue to say that it’s small so we use socialNetwork. socialNetwork doesn’t
have timeout capabilities so we added this functionality. Walk through how we did that and mention future plan.

Add a conclusion slide

32

Example of timeout functionality in socialNetwork

- For one of socialNetwork’s services,
ComposePostService, we forced the
service to take more than 20 s for
each of its requests.

- To test our implementation of adding
timeout values, we set the timeout
value as 10 s.

- Eventually, we will feed in the optimal
timeouts from our algorithms into our
testbed to test their performance.

33

Setting a good timeout value is hard

- Latency is not the same every time
- Systems are changing
- Systems can get overloaded (metastable failure)
- Cache miss/hit
- There are multiple servers that can accept a single request, causing greater

complexity
- Collecting data is costly
- Timeouts that are too short result in valid requests not being considered
- Timeouts that are too long result in resources being allocated to requests that

will never return a response

34

- Sometimes, it may be useful to set a timeout once and for all.
- However, when systems evolve, optimal timeouts (neither too short nor too

long) may change with them.
- We want to create an algorithm that can continuously update timeout values

to adapt to the changing distributed system.

We have two levels of dynamicity

- Changes over long periods of time (e.g. an implementation for a service
changes).

- Changes over short periods of time (e.g. latency momentarily spikes).

Resilience to change in the system: Dynamic timeouts

35

Model Iteration

36

Curve fitting Expected latency function

Extensions to sequences

What is the client actually doing? Intuition
- If we timeout on the first val, chances

are we have timed out
- We send another request with a higher

timeout value to hedge our bets
- Explain in terms of curves & bumps

Tension between waiting longer to get
request, or has it already failed?

Explain each part of
the equation
intuitively

Practical implementation of mathematical model

37

Organize the screenshot better

Distributed Systems are powerful but complex

38

Netflix’s distributed systems

Challenge: debugging and failure-tolerance

Testbed we builtBenefits:
Independent scaling of
systems

Parallelism

Language Heterogeneity

Request

Adding timeout functionality to socialNetwork

- socialNetwork makes requests using a framework called Thrift which doesn’t
have timeouts.

- We modified the services of socialNetwork, in C++.

- With our modified application we used Docker to create another image and
tested sample workflows on our application using an HTTP workload
generator called wrk2.

39

